Closing Wed: HW_8 (8.3)
(Just one assignment, there is no 8A, 8B, 8C). Midterm 2 will be returned Tuesday.

9.1 Introduction to Differential Equations

Goal: To see a few differential equations and understand what a solution is.

A differential equation is an equation involving derivatives.

Recall:
$\frac{d y}{d t}=$ "instantaneous rate of change of y with respect to $t "$

3 applied examples:

1. A simple model for population growth Assume: "The rate of growth of a population is proportional to the size of the population."
$\mathrm{P}(\mathrm{t})=$ the population at year t, $\frac{d P}{d t}=$ the rate of change of the population with respect to time (rate of growth).
So the assumption is equivalent to the differential equation

$$
\frac{d P}{d t}=k P,
$$

for some constant k.
2. Newton's Law of Cooling

Assume: "The rate of cooling is proportional to the temperature difference between the object and its surroundings."
$T_{s}=$ constant temperature of the surroundings $\mathrm{T}(\mathrm{t})=$ the temperature of an object at time t, $\frac{d T}{d t}=$ the rate of change of the temperature with respect to time (rate of cooling).
$T-T_{S}=$ temp. difference between object and surroundings.
So Newton's Law of Cooling is equivalent to the differential equation

$$
\frac{d T}{d t}=k\left(T-T_{s}\right)
$$

for some constant k.

3. A Mixing Problem

Assume a 50 gallon vat is initially full of pure water. A salt water mixture is being dumped into the vat at $2 \mathrm{gal} / \mathrm{min}$ and this mixture contains 3 $\mathrm{g} / \mathrm{gal}$. The vat is mixed together.
At the same time, the mixture is coming out of the vat at $2 \mathrm{gal} / \mathrm{min}$.

Let $\mathrm{y}(\mathrm{t})=$ grams of salt in the vat at time t min. $\frac{y(t)}{50}=$ amount of salt per gal in the vat at time, t. $\frac{d y}{d t}=$ the rate $(\mathrm{g} / \mathrm{min})$ at which amount of salt is changing with respect to time.
Salt is coming IN at a constant rate of

$$
\text { RATE IN }=(3 \mathrm{~g} / \mathrm{gal})(2 \mathrm{gal} / \mathrm{min})=6 \mathrm{~g} / \mathrm{min}
$$

Salt is coming OUT at a rate of

$$
\text { RATE OUT }=\left(\frac{y}{50} \mathrm{~g} / \mathrm{gal}\right)(2 \mathrm{gal} / \mathrm{min})=\frac{y}{25} \mathrm{~g} / \mathrm{min}
$$

Thus,

$$
\frac{d y}{d t}=6-\frac{y}{25}
$$

A solution to a differential equation is any function that satisfies the equation.

Consider the differential equation: $\frac{d P}{d t}=2 P$
(a) $\mathrm{P}(\mathrm{t})=8 \mathrm{e}^{2 t}$ is a solution because $\frac{d P}{d t}=16 e^{2 t} \quad$ and $2 P=16 e^{2 t}$, which are the same.
(b) $\mathrm{P}(\mathrm{t})=\mathrm{t}^{3}$ is NOT a solution because $\frac{d P}{d t}=3 t^{2}$ and $2 P=2 t^{3}$,
which are NOT the same.
(c) $\mathrm{P}(\mathrm{t})=0$ is a solution because

$$
\frac{d P}{d t}=0 \quad \text { and } \quad 2 P=0
$$

(d) The general solution is $\mathrm{P}(\mathrm{t})=\mathrm{C} \mathrm{e}^{2 \mathrm{t}}$ (for any constant C). We will learn how to find this next time.

Consider the differential equation:

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

(a) Is $y=e^{2 t}$ a solution?
$y^{\prime}=2 e^{2 t}$ and $y^{\prime \prime}=4 e^{2 t}$
So $y^{\prime \prime}-2 y^{\prime}+y=4 e^{2 t}-4 e^{2 t}+e^{2 t}=e^{2 t}$,
which is NOT zero.
Thus it is NOT a solution.
(b) Is $y=t e^{t}$ a solution? YES (you check)
(c) There is a solution that looks like $y=e^{r t}$.

Can you find the value of r that works?

$$
\begin{aligned}
& y^{\prime}=r e^{r t}, \quad y^{\prime \prime}=r^{2} e^{r t} \text { and we want } \\
& y^{\prime \prime}-2 y^{\prime}+y=0 \quad(\text { for all values of } t) .
\end{aligned}
$$

Substituting and factoring gives

$$
\begin{aligned}
& \left(r^{2}-2 r+1\right) e^{r t}=0, \text { so we must have } \\
& r^{2}-2 r+1=0, \text { which means } r=1
\end{aligned}
$$

